skip to main content


Search for: All records

Creators/Authors contains: "McCann, Roy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 16, 2024
  2. Compared to a conventional mono-facial photovoltaic (PV) module, a bifacial one is more efficient as it receives light from not only the front but also the backside. The daily irradiance profile of a bifacial PV module is of a two-peak trajectory that almost coincides with the morning and evening peak demands. This interesting property helps distribution network operators better handle the issues caused by the abundance of conventional PVs during midday (i.e., Duck curve). Moreover, this two-humped profile can be incorporated into network operation strategies such as conservation voltage reduction (CVR). Thus, this paper proposes a new CVR framework that best uses the double-peak profile of bifacial PV modules to improve the voltage profile of a distribution network. The proposed framework optimally coordinates legacy voltage control devices, including on-load tap changers and voltage regulators, as well as Volt/VAr control of smart inverters. The effectiveness of the proposed framework is simulated and verified on the well-known modified 34-bus system using the Matlab-COM-OpenDSS platform. The results clearly demonstrate the advantages of bifacial PVs over their mono-facial counterparts. 
    more » « less
  3. This article proposes a new framework for the substation demand reduction and power loss minimization in distribution networks by implementing conservation voltage reduction (CVR) strategy. The proposed framework coordinates Battery Energy Storage Systems (BESS), Smart PV inverters and voltage control devices -including OLTC and voltage regulators- so that the substation demand and network power loss are reduced while the service voltage range meets the IEEE 1547 standard (120-114 V). The suggested CVR strategy is applied to the IEEE 34-bus case study system consisting of two PV generations and BESS. The smart PV inverters are controlled based on the combined Volt/VArVolt/Watt (VVW) characteristics scheme. Also, BESS is charged and discharged with regard to the time and peaks have control modes, respectively. The Arithmetic Optimization Algorithm (AOA) is implemented in MATLAB scripts for solving the optimization problem. Power flow studies are carried out using OpenDSS software. Results reveal that the new framework can achieve higher substation demand reduction considering the concurrent control of PVs and BESS. 
    more » « less
  4. MMC-based back-to-back (B2B) converters are promising for hybrid AC/DC transmission systems when integrating large scale PV sources. This paper proposes a novel configuration for hybrid AC transmission systems with B2B converters and multi-terminal direct current (MTDC) operation which facilitates the integration of PV energy and enhances the system stability and reliability. This is achieved by an advanced interconnection with two operation modes: 1-A bi-directional power flow via AC connections, and 2- Direct active power injection to the MTDC from PV source. Conventional outer, inner and capacitor voltage balancing control systems are utilized in this study for regulating the currents and voltages of B2B converter. Also, The Perturb and observe (P and O) technique is implemented for obtaining maximum power point tracking (MPPT) of the PV generation considering a dc-dc boost converter. The efficacy of this proposed configuration is verified through time-domain simulations carried out by MATLAB/SIMULINK. 
    more » « less
  5. Security is a well-known function to any transmission operator and system planner. As the world is moving toward the decarbonization of the power industry, it is more complicated for the system operators to maintain an acceptable level of security in the power system operation. More large-scale wind farms are being incorporated into the grid, and thus, the voltage stability concern is increasing. In practice, several contingencies are imagined by the system operators to assess the reliability of the grid. Since voltage stability is one of the major menaces that can trigger voltage instability in a power system, this paper is attempting to present to the transmission system planners and operators a dedicated methodology to facilitate the incorporation of large-scale wind farms into a transmission grid under high penetration of wind power. the stability of a wind-dominated power system is discussed based on Q-V and P-V methodologies and some N-1 contingencies with the Remedial Action Schemes (RAS). Furthermore, a methodology to rank the worst contingencies and to predict the voltage collapse during the highest wind penetration level is presented. Simulations have been, extensively, carried out to examine the methodology and have provided valuable information about the static security of the wind-dominated power system. The results can be used by the transmission system operator to anticipate voltage instability or voltage collapse in the power system during high wind penetration levels. 
    more » « less
  6. The increasing capacity from inverter-based resources (IBR) creates challenges for designing and operating electric power systems. In particular, wind and solar generation has very different characteristics compared to conventional turbo generators. This research investigates the critical clearing times for IBR as larger amounts of wind generation brought online. This paper develops a new six-bus transmission test systems for which multiple wind stations are interconnected. An exhaustive study of fault locations with respect to load levels and line impedances for a wide range of IBR penetration levels was performed with respect to inverter stability analysis to determine the corresponding critical clearing times. The results show that voltage stability at IBR points of interconnection can occur at not only higher penetration levels, but at lower penetrations as well. 
    more » « less
  7. null (Ed.)